Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 497
Filter
1.
Heliyon ; 10(9): e30622, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726103

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common pathologic type of primary liver cancer. Liver transplantation (LT) is a radical strategy for treating patients with early-stage HCC, which may lead to a better prognosis compared to hepatectomy and ablation. However, survival of patients who develop HCC recurrence after LT is short, and early recurrence is the most common cause of death. Thus, efficient biomarkers are also needed in LT to guide precision therapy to improve patient prognosis and 5-year survival. Protein induced by vitamin K absence or antagonist II (PIVKA-II) is an abnormal prothrombin that cannot activate coagulation, and it is significantly increased in patients with HCC, obstructive jaundice, and those taking vitamin K antagonists. Over the past decades, substantial progress has been made in the study of PIVKA-II in diagnosing, surveilling, and treating HCC, but its role in LT still needs to be elaborated. In this review, we focused on the role of PIVKA-II as a biomarker in LT for HCC, especially its relationship with clinicopathologic features, early recurrence, long-term survival, and donor-recipient selection.

2.
Alzheimers Res Ther ; 16(1): 103, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725083

ABSTRACT

BACKGROUND: The role of α-synuclein in dementia has been recognized, yet its exact influence on cognitive decline in non-demented older adults is still not fully understood. METHODS: A total of 331 non-demented individuals were included in the study from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Participants were divided into two distinct groups based on their α-synuclein levels: one with lower levels (α-synuclein-L) and another with higher levels (α-synuclein-H). Measurements included neuropsychiatric scales, cerebrospinal fluid (CSF) biomarkers, and blood transcriptomics. The linear mixed-effects model investigated the longitudinal changes in cognition. Kaplan-Meier survival analysis and the Cox proportional hazards model were utilized to evaluate the effects of different levels of α-synuclein on dementia. Gene set enrichment analysis (GSEA) was utilized to investigate the biological pathways related to cognitive impairment. Pearson correlation, multiple linear regression models, and mediation analysis were employed to investigate the relationship between α-synuclein and neurodegenerative biomarkers, and their potential mechanisms affecting cognition. RESULTS: Higher CSF α-synuclein levels were associated with increased risk of cognitive decline and progression to dementia. Enrichment analysis highlighted the activation of tau-associated and immune response pathways in the α-synuclein-H group. Further correlation and regression analysis indicated that the CSF α-synuclein levels were positively correlated with CSF total tau (t-tau), phosphorylated tau (p-tau) 181, tumor necrosis factor receptor 1 (TNFR1) and intercellular cell adhesion molecule-1 (ICAM-1). Mediation analysis further elucidated that the detrimental effects of CSF α-synuclein on cognition were primarily mediated through CSF t-tau and p-tau. Additionally, it was observed that CSF α-synuclein influenced CSF t-tau and p-tau181 levels via inflammatory pathways involving CSF TNFR1 and ICAM-1. CONCLUSIONS: These findings elucidate a significant connection between elevated levels of CSF α-synuclein and the progression of cognitive decline, highlighting the critical roles of activated inflammatory pathways and tau pathology in this association. They underscore the importance of monitoring CSF α-synuclein levels as a promising biomarker for identifying individuals at increased risk of cognitive deterioration and developing dementia.


Subject(s)
Biomarkers , Cognitive Dysfunction , alpha-Synuclein , tau Proteins , Humans , Female , Male , Cognitive Dysfunction/cerebrospinal fluid , alpha-Synuclein/cerebrospinal fluid , Aged , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Biomarkers/blood , Aged, 80 and over , Neuropsychological Tests
3.
Transl Res ; 271: 26-39, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734063

ABSTRACT

Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to ß-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.

4.
J Clin Neurosci ; 124: 20-26, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38640804

ABSTRACT

OBJECTIVE: To investigate the relationship between short-term changes in quantitative myasthenia gravis score (QMGS) after thymectomy and postoperative recurrence in myasthenia gravis (MG) patients without thymoma. METHODS: A retrospective observational cohort study. The QMGS of 44 patients with non-thymomatous MG were evaluated before and 1 month after thymectomy, and the frequency and time of postoperative recurrence were recorded. The reduction rate of QMGS (rr-QMGS) was defined as (QMGS one week before thymectomy - QMGS one month after thymectomy)/ QMGS one week before thymectomy × 100 %, as an indicator of short-term symptom change after thymectomy. The receiver operating characteristic (ROC) curve was established to determine an appropriate cut-off value of rr-QMGS for distinguishing postoperative recurrence. Multivariate Cox regression analysis was applied to predict postoperative recurrence. RESULTS: Postoperative recurrence occurred in 21 patients (30 times in total) during follow-up. The mean annual recurrence rate was 3.98 times/year preoperatively and 0.30 times/year postoperatively. ROC analysis determined the cut-off value of rr-QMGS was 36.7 % (sensitivity 90.5 %, specificity 52.2 %). Multivariate Cox regression analysis showed that rr-QMGS<36.7 % (hazard rate[HR]6.251, P = 0.014) is positive predictor of postoperative recurrence. Kaplan-Meier analysis showed that postoperative recurrence time was earlier in the low rr-QMGS group than in the high rr-QMGS group (12.62 vs. 36.60 months, p = 0.005). CONCLUSIONS: Low rr-QMGS is associated with early postoperative recurrence. Rr-QMGS can be used to predict postoperative recurrence of non-thymomatous MG.

5.
J Mater Chem B ; 12(19): 4613-4628, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38655586

ABSTRACT

The clinical treatment of chronic diabetic wounds is a long-standing thorny issue. Strategies targeting the diabetic micro-environment have been developed to promote wound healing. However, it remains challenging to reverse the adverse conditions and re-activate tissue regeneration and angiogenesis. In this work, we develop injectable hydrogels that are responsive to acidic conditions, reactive oxygen species (ROS), and high glucose levels in a diabetic wound micro-environment to sustainably deliver tannic acid (TA) to augment antibacterial, anti-inflammatory, and anti-oxidative activities. This triple-responsive mechanism is designed by introducing dynamic acylhydrazone and phenylboronic ester bonds to crosslink modified hyaluronic acid (HA) chains. At a diabetic wound, the acylhydrazone bonds may be hydrolyzed at low pH. Meanwhile, glucose may compete with TA, and ROS may oxidize the C-B bond to release TA. Thus, sustained release of TA is triggered by the diabetic micro-environment. The released TA effectively scavenges ROS and kills bacteria. In vivo experiments on diabetic mice demonstrate that the hydrogel dressing highly promotes angiogenesis and extracellular matrix (ECM) deposition, leading to eventual full healing of diabetic skin wounds. This micro-environment-triggered triple-responsive drug release provides a promising method for chronic diabetic wound healing.


Subject(s)
Anti-Bacterial Agents , Diabetes Mellitus, Experimental , Hyaluronic Acid , Hydrogels , Wound Healing , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Wound Healing/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Diabetes Mellitus, Experimental/drug therapy , Neovascularization, Physiologic/drug effects , Collagen/chemistry , Bandages , Tannins/chemistry , Tannins/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Male , Reactive Oxygen Species/metabolism , Humans , Angiogenesis
6.
Medicine (Baltimore) ; 103(15): e37838, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608046

ABSTRACT

BACKGROUND: The effects of vitamin C supplementation on patients with septic shock remain controversial. We aimed to evaluate the effects of different vitamin C dosages on norepinephrine (NE) synthesis in adult patients with septic shock. METHODS: A total of 58 patients with septic shock admitted to our intensive care unit (ICU) between July 2021 and December 2022 were included. Patients were randomly divided into 3 groups: high-dose vitamin C (150 mg/kg/d, group A), low-dose vitamin C (50 mg/kg/d, group B), and placebo (group C). NE synthesis-related indicators (dopamine-ß-hydroxylase [DßH], tyrosine hydroxylase [TH], tetrahydrobiopterin [BH4], and dopamine [DA]), plasma NE, and vitamin C levels were measured every 24 hours and analyzed. All-cause mortality within 28 days and other clinical outcomes (including Acute Physiology and Chronic Health Evaluation [APACHE], Sequential Organ Failure Assessment [SOFA], and Multiple-Organ Dysfunction Syndrome [MODS] scores) were compared. RESULTS: Changes in TH, BH4, and DßH levels at 96 hours in groups A and B were greater than those in group C. These differences became more pronounced over the course of the intravenous vitamin C administration. Significant differences between groups A and C were detected at 96-hours TH, 72-hours BH4, 96-hours BH4, 96-hours DA, and DßH levels every 24 hours. The 96-hours TH, 96-hours BH4, and 48-hours DßH in group B were significantly higher than those in group C. The NE levels every 24 hours in groups A and B were higher than those in group C, group A and group C had a statistically significant difference. The 96-hours exogenous NE dosage in groups A and B was significantly lower than that in group C. No significant reductions in APACHE, SOFA, or MODS scores were observed in the vitamin C group, including the duration of ICU stay and mechanical ventilation. The 28-days mortality was lower in groups A and B than in group C (0%, 10%, and 16.67%, P = .187), but the difference was not significant. CONCLUSION: For patients with septic shock, treatment with vitamin C significantly increased TH, BH4, and DßH levels and reduced the exogenous NE dosage, but did not significantly improve clinical outcomes.


Subject(s)
Antineoplastic Agents , Shock, Septic , Adult , Humans , Norepinephrine , Shock, Septic/drug therapy , Dopamine , Prospective Studies , Vitamins/therapeutic use , Ascorbic Acid/therapeutic use
7.
Molecules ; 29(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611793

ABSTRACT

Reported herein is a Paternò-Büchi reaction of aromatic double bonds with quinones under visible light irradiation. The reactions of aromatics with quinones exposed to blue LED irradiation yielded oxetanes at -78 °C, which was attributed to both the activation of double bonds in aromatics and the stabilization of oxetanes by thiadiazole, oxadiazole, or selenadiazole groups. The addition of Cu(OTf)2 to the reaction system at room temperature resulted in the formation of diaryl ethers via the copper-catalyzed ring opening of oxetanes in situ. Notably, the substrate scope was extended to general aromatics.

8.
Front Plant Sci ; 15: 1342814, 2024.
Article in English | MEDLINE | ID: mdl-38638357

ABSTRACT

Introduction: The severity of flood disasters is increasing due to climate change, resulting in a significant reduction in the yield and quality of forage crops worldwide. This poses a serious threat to the development of agriculture and livestock. Hemarthria compressa is an important high-quality forage grass in southern China. In recent years, frequent flooding has caused varying degrees of impacts on H. compressa and their ecological environment. Methods: In this study, we evaluated differences in flooding tolerance between the root systems of the experimental materials GY (Guang Yi, flood-tolerant) and N1291 (N201801291, flood-sensitive). We measured their morphological indexes after 7 d, 14 d, and 21 d of submergence stress and sequenced their transcriptomes at 8 h and 24 h, with 0 h as the control. Results: During submergence stress, the number of adventitious roots and root length of both GY and N1291 tended to increase, but the overall growth of GY was significantly higher than that of N1291. RNA-seq analysis revealed that 6046 and 7493 DEGs were identified in GY-8h and GY-24h, respectively, and 9198 and 4236 DEGs in N1291-8h and N1291-24h, respectively, compared with the control. The GO and KEGG enrichment analysis results indicated the GO terms mainly enriched among the DEGs were oxidation-reduction process, obsolete peroxidase reaction, and other antioxidant-related terms. The KEGG pathways that were most significantly enriched were phenylpropanoid biosynthesis, plant hormone signal transduction etc. The genes of transcription factor families, such as C2H2, bHLH and bZIP, were highly expressed in the H. compressa after submergence, which might be closely related to the submergence adaptive response mechanisms of H. compressa. Discussion: This study provides basic data for analyzing the molecular and morphological mechanisms of H. compressa in response to submergence stress, and also provides theoretical support for the subsequent improvement of submergence tolerance traits of H. compressa.

9.
Int J Biol Macromol ; 268(Pt 1): 131833, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663703

ABSTRACT

The emergence and widespread of multidrug-resistant Gram-negative bacteria have posed a severe threat to human health and environmental safety, escalating into a global medical crisis. Utilization of antibiotic adjuvants is a rapid approach to combat bacterial resistance effectively since the development of new antimicrobial agents is a formidable challenge. NhaA, driven by proton motive force, is a crucial secondary transporter on the cytoplasmic membrane of Escherichia coli. We found that 2-Aminoperimidine (2-AP), which is a specific inhibitor of NhaA, could enhance the activity of colistin against sensitive E. coli and reverse the resistance in mcr-1 positive E. coli. Mechanistic studies indicated that 2-AP induced dysfunction in cytoplasmic membrane through the suppression of NhaA, leading to metabolic inhibition and ultimately enhancing the sensitivity of E. coli to colistin. Moreover, 2-AP restored the efficacy of colistin against resistant E. coli in two animal infection models. Our findings reveal the potential of NhaA as a novel target for colistin adjuvants, providing new possibilities for the clinical application of colistin.

10.
Regen Ther ; 27: 279-289, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38617444

ABSTRACT

Introduction: Cell transplantation is an emerging and effective therapeutic approach for enhancing uterine adhesions caused by endometrial damage. Currently, human umbilical cord blood mononuclear cells (HUCBMCs) have been extensively for tissue and organ regeneration. However, their application in endometrial repair remains unexplored. Our investigation focuses on the utilization of HUCBMCs for treating endometrial injury. Methods: The HUCBMCs were isolated from health umbilical cord blood, and co-cultured with the injured endometrial stromal cells and injured endometrial organoids. The cell proliferation and apoptosis were measured by cck8 assays and flow cytometry. Western blotting was used to detect the expression of PTEN, AKT and p-AKT. Immunofluorescence assay revealed expression levels of epithelial-mesenchymal transition (EMT) -related markers such as E-cadherin, N-cadherin, and TGF-ß1. The endometrial thickness, fibrosis level, and glandular number were examined after the intravenous injection of HUCBMCs in mouse endometrial models. Immunohistochemistry was employed to assess changes in growth factors vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) as well as fibrosis markers α-SMA and COL1A1. Additionally, expressions of EMT-related proteins E-cadherin and N-cadherin were evaluated. Results: HUCBMCs significantly improved the proliferation and reduced the apoptosis of damaged endometrial stromal cells (ESCs), accompanied by up-regulation of phospho-AKT expression. HUCBMCs increased endometrial thickness and glandular count while decreasing fibrosis and EMT-related markers in mouse endometrial models. Furthermore, EMT-related markers of ESCs and endometrial organoids were significantly decreased. Conclusions: Our findings suggest that HUCBMCs plays a pivotal role in mitigating endometrial injury through the attenuation of fibrosis. HUCBMCs may exert a reverse effect on the EMT process during the endometrium reconstruction.

11.
J Hazard Mater ; 470: 134228, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626683

ABSTRACT

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Subject(s)
Arsenic , Cadmium , Gene Expression Regulation, Plant , Lolium , Plant Growth Regulators , Stress, Physiological , Cadmium/toxicity , Lolium/drug effects , Lolium/metabolism , Lolium/genetics , Arsenic/toxicity , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Indoleacetic Acids/metabolism , Abscisic Acid/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
12.
Angew Chem Int Ed Engl ; : e202405592, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647330

ABSTRACT

In aqueous aluminum-ion batteries(AAIBs), the insertion/extraction chemistry of Al3+ often leads to poor kinetics, whereas the rapid diffusion kinetics of hydrated hydrogen ions (H3O+) may offer the solution. However, the presence of considerable Al3+ in the electrolyte hinders the insertion reaction of H3O+. Herein, we report how oxygen-deficient α-MoO3 nanosheets unlock selective H3O+ insertion in a mild aluminum-ion electrolyte. The abundant oxygen defects impede the insertion of Al3+ due to excessively strong adsorption, while allowing H3O+ to be inserted/diffused through the Grotthuss proton conduction mechanism. This research advances our understanding of the mechanism behind selective H3O+ insertion in mild electrolytes.

13.
Trends Neurosci ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38614892

ABSTRACT

In a recent study, Oliveira and colleagues revealed how growth arrest and DNA damage-inducible protein 34 (GADD34), an effector of the integrated stress response, initiates the translation of synaptic plasticity-related mRNAs following brain-derived neurotrophic factor (BDNF) stimulation. This work suggests that GADD34 may link transcriptional products with translation control upon neuronal activation, illuminating how protein synthesis is orchestrated in neuronal plasticity.

14.
Respir Res ; 25(1): 154, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566093

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fatal, and aging-associated interstitial lung disease with a poor prognosis and limited treatment options, while the pathogenesis remains elusive. In this study, we found that the expression of nuclear receptor subfamily 2 group F member 2 (NR2F2), a member of the steroid thyroid hormone superfamily of nuclear receptors, was reduced in both IPF and bleomycin-induced fibrotic lungs, markedly in bleomycin-induced senescent epithelial cells. Inhibition of NR2F2 expression increased the expression of senescence markers such as p21 and p16 in lung epithelial cells, and activated fibroblasts through epithelial-mesenchymal crosstalk, inversely overexpression of NR2F2 alleviated bleomycin-induced epithelial cell senescence and inhibited fibroblast activation. Subsequent mechanistic studies revealed that overexpression of NR2F2 alleviated DNA damage in lung epithelial cells and inhibited cell senescence. Adenovirus-mediated Nr2f2 overexpression attenuated bleomycin-induced lung fibrosis and cell senescence in mice. In summary, these data demonstrate that NR2F2 is involved in lung epithelial cell senescence, and targeting NR2F2 may be a promising therapeutic approach against lung cell senescence and fibrosis.


Subject(s)
Cellular Senescence , Idiopathic Pulmonary Fibrosis , Animals , Mice , Bleomycin/adverse effects , Epithelial Cells/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Lung/metabolism
15.
BMC Pediatr ; 24(1): 230, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561707

ABSTRACT

BACKGROUND: Newborn screening (NBS), such as tandem mass spectrometry (MS/MS), may yield false positive/negative results. Next-generation sequencing (NGS) has the potential to provide increased data output, efficiencies, and applications. This study aimed to analyze the types and distribution of pathogenic gene mutations in newborns in Huzhou, Zhejiang province, China and explore the applicability of NGS and MS/MS in NBS. METHODS: Blood spot samples from 1263 newborns were collected. NGS was employed to screen for pathogenic variants in 542 disease-causing genes, and detected variants were validated using Sanger sequencing. Simultaneously, 26 inherited metabolic diseases (IMD) were screened using MS/MS. Positive or suspicious samples identified through MS/MS were cross-referenced with the results of NGS. RESULTS: Among all newborns, 328 had no gene mutations detected. NGS revealed at least one gene mutation in 935 newborns, with a mutation rate of 74.0%. The top 5 genes were FLG, GJB2, UGT1A1, USH2A, and DUOX2. According to American College of Medical Genetics guidelines, gene mutations in 260 cases were classified as pathogenic or likely pathogenic mutation, with a positive rate of 20.6%. The top 5 genes were UGT1A1, FLG, GJB2, MEFV, and G6PD. MS/MS identified 18 positive or suspicious samples for IMD and 1245 negative samples. Verification of these cases by NGS results showed no pathogenic mutations, resulting in a false positive rate of 1.4% (18/1263). CONCLUSION: NBS using NGS technology broadened the range of diseases screened, and enhanced the accuracy of diagnoses in comparison to MS/MS for screening IMD. Combining NGS and biochemical screening would improve the efficiency of current NBS.


Subject(s)
Metabolic Diseases , Neonatal Screening , Infant, Newborn , Humans , Neonatal Screening/methods , Tandem Mass Spectrometry , Metabolic Diseases/diagnosis , Mutation , High-Throughput Nucleotide Sequencing/methods , Pyrin/genetics
16.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 551-555, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684299

ABSTRACT

OBJECTIVE: To analyze the types and distribution of pathogenic variants for neonatal genetic diseases in Huzhou, Zhejiang Province. METHODS: One thousand neonates (48 ~ 42 h after birth) born to Huzhou region were selected as the study subjects. Dry blood spot samples were collected from the newborns, and targeted capture high-throughput sequencing was carried out for pathogenic genes underlying 542 inherited diseases. Candidate variants were verified by Sanger sequencing. RESULTS: Among the 1 000 newborns, the male to female ratio was 1.02 : 1.00. No pathogenic variants were detected in 253 cases, whilst 747 cases were found to carry at least one pathogenic variant, which yielded a carrier rate of 74.7%. The most frequently involved pathogenic gene was FLG, followed by GJB2, UGT1A1, USH2A and DUOX2. The variants were classified as homozygous, compound heterozygous, and hemizygous variants. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), 213 neonates were verified to have carried pathogenic and/or likely pathogenic variants, with a positive rate of 21.3%. The most commonly involved genes had included UGT1A1, FLG, GJB2, MEFV and G6PD. CONCLUSION: Newborn screening based on high-throughput sequencing technology can expand the scope of screening and improve the positive predictive value. Genetic counseling based on the results can improve the patients' medical care and reduce neonatal mortality and childhood morbidity, while provide assistance to family members' health management and reproductive decisions.


Subject(s)
Connexin 26 , Filaggrin Proteins , Genetic Testing , Humans , Infant, Newborn , Female , Male , Connexin 26/genetics , Genetic Testing/methods , China , High-Throughput Nucleotide Sequencing , Connexins/genetics , Neonatal Screening/methods , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/diagnosis , Glucuronosyltransferase/genetics , Mutation
17.
J Extracell Vesicles ; 13(4): e12428, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38581089

ABSTRACT

It is well known that DNA damage can cause apoptosis. However, whether apoptosis and its metabolites contribute to DNA repair is largely unknown. In this study, we found that apoptosis-deficient Fasmut and Bim- /- mice show significantly elevated DNA damage and premature cellular senescence, along with a significantly reduced number of 16,000 g apoptotic vesicles (apoVs). Intravenous infusion of mesenchymal stromal cell (MSC)-derived 16,000 g apoVs rescued the DNA damage and premature senescence in Fasmut and Bim-/- mice. Moreover, a sublethal dose of radiation exposure caused more severe DNA damage, reduced survival rate, and loss of body weight in Fasmut mice than in wild-type mice, which can be recovered by the infusion of MSC-apoVs. Mechanistically, we showed that apoptosis can assemble multiple nuclear DNA repair enzymes, such as the full-length PARP1, into 16,000 g apoVs. These DNA repair components are directly transferred by 16,000 g apoVs to recipient cells, leading to the rescue of DNA damage and elimination of senescent cells. Finally, we showed that embryonic stem cell-derived 16,000 g apoVs have superior DNA repair capacity due to containing a high level of nuclear DNA repair enzymes to rescue lethal dose-irradiated mice. This study uncovers a previously unknown role of 16,000 g apoVs in safeguarding tissues from DNA damage and demonstrates a strategy for using stem cell-derived apoVs to ameliorate irradiation-induced DNA damage.


Subject(s)
Extracellular Vesicles , Animals , Mice , Cellular Senescence , DNA Damage , DNA Repair , DNA Repair Enzymes
18.
J Med Internet Res ; 26: e45545, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630535

ABSTRACT

BACKGROUND: Fundus photography is the most important examination in eye disease screening. A facilitated self-service eye screening pattern based on the fully automatic fundus camera was developed in 2022 in Shanghai, China; it may help solve the problem of insufficient human resources in primary health care institutions. However, the service quality and residents' preference for this new pattern are unclear. OBJECTIVE: This study aimed to compare the service quality and residents' preferences between facilitated self-service eye screening and traditional manual screening and to explore the relationships between the screening service's quality and residents' preferences. METHODS: We conducted a cross-sectional study in Shanghai, China. Residents who underwent facilitated self-service fundus disease screening at one of the screening sites were assigned to the exposure group; those who were screened with a traditional fundus camera operated by an optometrist at an adjacent site comprised the control group. The primary outcome was the screening service quality, including effectiveness (image quality and screening efficiency), physiological discomfort, safety, convenience, and trustworthiness. The secondary outcome was the participants' preferences. Differences in service quality and the participants' preferences between the 2 groups were compared using chi-square tests separately. Subgroup analyses for exploring the relationships between the screening service's quality and residents' preference were conducted using generalized logit models. RESULTS: A total of 358 residents enrolled; among them, 176 (49.16%) were included in the exposure group and the remaining 182 (50.84%) in the control group. Residents' basic characteristics were balanced between the 2 groups. There was no significant difference in service quality between the 2 groups (image quality pass rate: P=.79; average screening time: P=.57; no physiological discomfort rate: P=.92; safety rate: P=.78; convenience rate: P=.95; trustworthiness rate: P=.20). However, the proportion of participants who were willing to use the same technology for their next screening was significantly lower in the exposure group than in the control group (P<.001). Subgroup analyses suggest that distrust in the facilitated self-service eye screening might increase the probability of refusal to undergo screening (P=.02). CONCLUSIONS: This study confirms that the facilitated self-service fundus disease screening pattern could achieve good service quality. However, it was difficult to reverse residents' preferences for manual screening in a short period, especially when the original manual service was already excellent. Therefore, the digital transformation of health care must be cautious. We suggest that attention be paid to the residents' individual needs. More efficient man-machine collaboration and personalized health management solutions based on large language models are both needed.


Subject(s)
Language , Humans , Cross-Sectional Studies , China , Logistic Models
19.
Food Chem X ; 22: 101257, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38495458

ABSTRACT

In this study, high-throughput sequencing and metabolomics analysis were conducted to analyze the microbial and metabolites of dry-cured Sanchuan ham, Laowo ham, Nuodeng ham, and Heqing ham that have fermented for two years produced from western Yunnan China. Results showed that at the genus level, the dominant bacteria in the four types of ham were Halomonas and Staphylococcus, while the dominant fungi were Aspergillus and Yamadazyma. A total 422 different metabolites were identified in four types of ham, mainly amino acids, peptides, fatty acids, and their structural analogs, which were involved in pantothenate and coenzyme A biosynthesis, caffeine, and tyrosine metabolism. The dominant microorganisms of the four types of ham were mainly related to the metabolism of fatty acids and amino acids. This research enhances the identification degree of these four types of dry-cured ham and provides a theoretical basis for developing innovative and distinctive ham products.

20.
Front Nutr ; 11: 1210855, 2024.
Article in English | MEDLINE | ID: mdl-38496795

ABSTRACT

Background: Existing studies confirm the importance of dietary factors in developing autism spectrum disorder (ASD) and disease progression. Still, these studies are primarily observational, and their causal relationship is unknown. Moreover, due to the extensive diversity of food types, the existing research remains somewhat limited in comprehensiveness. The inconsistency of the results of some studies is very disruptive to the clinic. This study infers a causal relationship between dietary factors on the risk of developing ASD from a genetic perspective, which may lead to significant low-cost benefits for children with ASD once the specificity of dietary factors interfering with ASD is confirmed. Methods: We performed a two-sample Mendelian randomization (MR) analysis by selecting single nucleotide polymorphisms (SNPs) for 18 common dietary factors from the genome-wide association study (GWAS) database as instrumental variables (IVs) and obtaining pooled data for ASD (Sample size = 46,351) from the iPSYCH-PGC institution. Inverse variance weighted (IVW) was used as the primary analytical method to estimate causality, Cochran's Q test to assess heterogeneity, the Egger-intercept test to test for pleiotropy and sensitivity analysis to verify the reliability of causal association results. Results: The MR analysis identified four dietary factors with potential causal relationships: poultry intake (fixed-effects IVW: OR = 0.245, 95% CI: 0.084-0.718, P < 0.05), beef intake (fixed-effects IVW: OR = 0.380, 95% CI: 0.165-0.874, P < 0.05), cheese intake (random-effects IVW: OR = 1.526, 95% CI: 1.003-2.321, P < 0.05), and dried fruit intake (fixed-effects IVW: OR = 2.167, 95% CI: 1.342-3.501, P < 0.05). There was no causal relationship between the remaining 14 dietary factors and ASD (P > 0.05). Conclusion: This study revealed potential causal relationships between poultry intake, beef intake, cheese intake, dried fruit intake, and ASD. Poultry and beef intake were associated with a reduced risk of ASD, while cheese and dried fruit intake were associated with an increased risk. Other dietary factors included in this study were not associated with ASD.

SELECTION OF CITATIONS
SEARCH DETAIL
...